
参考文献
[1] Förster T. Zwischenmolekulare Energiewanderung und Fluoreszenz[J]. Annalen der Physik, 1948, 437(1-2): 55-75.
[2] Stryer L, Haugland R P. Energy transfer: a spectroscopic ruler[J]. Proceedings of the National Academy of Sciences of the United States of America, 1967, 58(2): 719-726.
[3] Stryer L. Fluorescence energy transfer as a spectroscopic ruler[J]. Annual Review of Biochemistry, 1978, 47: 819-846.
[4] Kenworthy A K. Imaging protein-protein interactions using fluorescence resonance energy transfer microscopy[J]. Methods(San Diego, Calif), 2001, 24(3): 289-296.
[5] Maurel D, Comps-Agrar L, Brock C, et al. Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization[J]. Nature Methods, 2008, 5(6): 561-567.
[6] Xu Q H, Gaylord B S, Wang S, et al. Time-resolved energy transfer in DNA sequence detection using water-soluble conjugated polymers: the role of electrostatic and hydrophobic interactions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(32): 11634-11639.
[7] Wahlroos R, Toivonen J, Tirri M, et al. Two-photon excited fluorescence energy transfer: a study based on oligonucleotide rulers[J]. Journal of Fluorescence, 2006, 16(3): 379-386.
[8] Liu L, Dong X, Lian W, et al. Homogeneous competitive hybridization assay based on two-photon excitation fluorescence resonance energy transfer[J]. Analytical Chemistry, 2010, 82(4): 1381-1388.
[9] Liu L, Li H, Qiu T, et al. Construction of a molecular beacon based on two-photon excited fluorescence resonance energy transfer with quantum dot as donor[J]. Chemical Communications, 2011, 47(9): 2622-2624.
[10] Dos Remedios C G, Moens P D. Fluorescence resonance energy transfer spectroscopy is a reliable “ruler” for measuring structural changes in proteins. Dispelling the problem of the unknown orientation factor[J]. Journal of Structural Biology, 1995, 115(2): 175-185.
[11] Resch-Genger U, Grabolle M, Cavaliere-Jaricot S, et al. Quantum dots versus organic dyes as fluorescent labels[J]. Nature methods, 2008, 5(9): 763-775.
[12] Waggoner A. Fluorescent labels for proteomics and genomics[J]. Current Opinion in Chemical Biology, 2006, 10(1): 62-66.
[13] Shaner N C, Steinbach P A, Tsien R Y. A guide to choosing fluorescent proteins[J]. Nature Methods, 2005, 2(12): 905-909.
[14] Cannizzo A, Van Mourik F, Gawelda W, et al. Broadband femtosecond fluorescence spectroscopy of[Ru(bpy)3] 2+[J]. Angewandte Chemie, 2010, 118(19): 3246-3248.
[15] Hemmilä I, Laitala V. Progress in lanthanides as luminescent probes[J]. Journal of Fluorescence, 2005, 15(4): 529-542.
[16] Cardoso Dos Santos M, Algar W R, Medintz I L, et al. Quantum dots for Förster Resonance Energy Transfer(FRET)[J]. TrAC Trends in Analytical Chemistry, 2020, 125: 115819.
[17] Miao S, Liang K, Kong B. Förster resonance energy transfer(FRET) paired carbon dot-based complex nanoprobes: versatile platforms for sensing and imaging applications[J]. Materials Chemistry Frontiers, 2020, 4(1): 128-139.
[18] Lin R, Chen Y, Tao G, et al. FRET-based Ratiometric MicroRNA Detection with G-quadruplex-stabilized Silver Nanoclusters[J]. Acta Chimica Sinica Chinese Edition, 2017, 75(11): 1103.
[19] Wu Z, Li H, Liu Z. An aptasensor for carcinoembryonic antigen based on upconversion fluorescence resonance energy transfer[J]. Sensors and Actuators B: Chemical, 2015, 206: 531-537.
[20] Yuan Y, Liu Z. An effective approach to enhanced energy-transfer efficiency from up-converting phosphors and increased assay sensitivity[J]. Chemical Communications, 2012, 48(60): 7510-7512.
[21] Miyawaki A, Llopis J, Heim R, et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin[J]. Nature, 1997, 388(6645): 882-887.
[22] Shiraki T, Tsuchiya Y, Shinkai S. Ratiometric Fluorescent Sensor for 2,4,6-Trinitrotoluene Designed Based on Energy Transfer between Size-different Quantum Dots[J]. Chemistry Letters, 2010, 39(3): 156-158.
[23] Dong B, Li H, Sun J, et al. Homogeneous fluorescent immunoassay for the simultaneous detection of chloramphenicol and amantadine via the duplex FRET between carbon dots and WS2 nanosheets[J]. Food Chemistry, 2020, 327: 127107.
[24] Rong Y, Li H, Ouyang Q, et al. Rapid and sensitive detection of diazinon in food based on the FRET between rare-earth doped upconversion nanoparticles and graphene oxide[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2020, 239: 118500.
[25] Duan L, Du X, Zhao H, et al. Sensitive and selective sensing system of metallothioneins based on carbon quantum dots and gold nanoparticles[J]. Analytica Chimica Acta, 2020, 1125: 177-186.