![五年制高职数学(第二册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/608/31729608/b_31729608.jpg)
6.3 向量的数量积及其运算法则
本节重点知识:
1.向量的数量积.
2.向量数量积的坐标运算.
6.3.1 向量的数量积
在物理学中,一个物体在力的作用下,产生位移
,若
与
之间的夹角为θ,则
所作的功W是
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029017.jpg?sign=1738809170-RKM70U2v5p3s20tQITEGOypKlfULwHze-0-9fc2c16b425243e9bdcf5afc41af7444)
这里功W是一个数量,它由向量和
的模及其夹角余弦的乘积来确定.像这样由两个向量的模及其夹角余弦的乘积确定一个数量的情况,在其他一些问题中也会遇到,如物理学中的功率
等.
若将两个非零向量,
,设为
则把射线OA与射线OB所组成的不大于π的角称做
与
的夹角,记做
显然
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029027.jpg?sign=1738809170-DkTjJ7c9RnG0YdDErMvefvnWuQsR3MzN-0-ebfb71d43fb61de7752e47ba1e74046f)
在数学中,我们将两个非零向量的模与它们的夹角θ的余弦的乘积定义为
与
的数量积(又称做内积),记做
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00029031.jpg?sign=1738809170-iCvxlM4Gj9ybkyGG3q3hPdycXTQP5Jgp-0-5e0a5d741ccb27a01211d65f987b2c4c)
其中θ表示
从而也可以表示成
注意 两个向量数量积的结果是一个实数,可能是正数,可能是负数,也可能是零.
想一想
如果 是两个非零向量,那么在什么条件下有以下结论:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030004.jpg?sign=1738809170-9gvdD4Z8S6DGXOdArpK7DizIzEqEopM9-0-4220a24535a0b8403d2738ba3e5db293)
练一练
(1)如果 ,那么
_________;
(2)如果 ,那么
_________.
例1 根据下列条件分别求出
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030010.jpg?sign=1738809170-syK19lJU3G6l3nvqlB89qxlEXXrmS0He-0-fa25f0d1950f151e5f5306cf7cdba6cc)
解 (1)因为
将已知条件代入,得
所以
又因为
所以
(2)因为
将已知条件代入,得
所以
又因为
所以
向量的数量积运算满足交换律和分配律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00030021.jpg?sign=1738809170-ugPataJmAriIv2HCboCkg5wKLqQvuRdC-0-a2d098242b25f5adf9695cacba0fb838)
但它不满足结合律,即
当实数与向量相乘时,满足结合律,即
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031001.jpg?sign=1738809170-jAiyKgEA7DQNxZUaVyYK5TPGXqdX9fSQ-0-b2d3ddf2d893a6772e4d541fff207499)
例2 已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031003.jpg?sign=1738809170-tzSRvnng4ZpktMuTRMrmSfkAYG4qWvxD-0-9b5426d8167686991cd866e1ee779553)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031004.jpg?sign=1738809170-fCBEfddmL4DJB5zt4CsL1CyUcTfepNTH-0-e5d98efc3f7c65869bd32a03642e151b)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031005.jpg?sign=1738809170-Gg4d90YXdRr8xOQF8aU8BAOSelexZ0HL-0-c75ed2a71c69487a1e59240f6f93380e)
练习
1.已知分别是平面直角坐标系中x轴和y轴上的单位向量,分别计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031007.jpg?sign=1738809170-Ag5grhnQ2MCp6wZowzQn3foLZ7zhVvTp-0-bfa01487979feb2009b86237c95f1594)
2.根据下列条件,求:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031009.jpg?sign=1738809170-r3oBVVRrtF5TI0FFhCBj8dSCmV1oI2bF-0-68de6a8c9fff4ca1676faceac3f6b80d)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031010.jpg?sign=1738809170-WXKhi1xxIcG4YbP0WM2I9ivbHUd1IJ7g-0-8a0d0da638850634b79ae86f817151b6)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031011.jpg?sign=1738809170-nFt2MKGj294JouTEN5hKn3EBmI2U1Dwp-0-73007d17fff4c3850dfcbb39eed074db)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031012.jpg?sign=1738809170-nWVqgG8ciX6zEwcp6GYTw85S3gyNWxqA-0-00e1fad93104fad329b5ba5aedf9437b)
3.已知求
4.已知计算:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031016.jpg?sign=1738809170-13bpPiUkiymxyNEliv3JrwbnksdWHTx7-0-e751310bef6951db5329591e6f937764)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031017.jpg?sign=1738809170-j4NzA1vc6FGXjheVAy2Y7XtwrpdnxiQK-0-94efe6399fbea41ec317b2dd3415cca0)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031018.jpg?sign=1738809170-uOQaUD0sx0oHbXgIhS93nJNwVMlxMMjx-0-83b1d84a1118aaabc4b986595f4d6fba)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031019.jpg?sign=1738809170-dKYR4fnBy3Ccse45tc1yDpVdoK3j1EAl-0-45394fb020012cfde6a8881fc961164c)
6.3.2 向量数量积的坐标运算
设向量的坐标为(x1,y1),即
向量
的坐标为(x2,y2)即
则
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031026.jpg?sign=1738809170-WZtVAje4sAWWCJo7RsOSTqWC5AZtwxk4-0-ce3a02fced017641c705257cca56761b)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031027.jpg?sign=1738809170-YNHDpjgJERa7bRJrs98syrjXPfmnFmPC-0-b5f51ef9e26ac15f07ddad1e2bf917ec)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00031028.jpg?sign=1738809170-zfqQ0Peuh4dBNjdu3Kk01ldWl5Fj5ZT7-0-de6ffbb887f37f60028349801b034b96)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032001.jpg?sign=1738809170-QsKJch6QO5nK6CCoagHeUtN4ruV4PDKU-0-cdd24ecb3723d3cc71813dfb9b244fe6)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032002.jpg?sign=1738809170-C09ava596zUoZ6KdMxxv4oU1bB9ELM1r-0-8e080bff9a3a030ca5ec62f1470da82a)
所以
就是说,在直角坐标系中,两个向量的数量积等于它们的横坐标之积与纵坐标之积的和.
例1 已知求
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032006.jpg?sign=1738809170-MCdC8bsFo8n8CNQNedkxkK6Mxl7JT7B2-0-e1f9d5649ac0497d847c753d6939748e)
当两个向量垂直时,夹角为,此时有
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032008.jpg?sign=1738809170-fHWRKR3rnOffWCXeMGFVkJONJB8lBkuo-0-89f6a890e882471eb8dbebe25c61ff62)
反之,若非零向量的数量积为0,即
则必然有cosθ=0,即
故有
如果则有
例2 判断下列各题中的向量与
是否垂直:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032017.jpg?sign=1738809170-Upi6UdKgOo4khh1lOMTZlpNd5K7ySlTD-0-bfbafdf664a317f28dc88ebe3d44d224)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032018.jpg?sign=1738809170-nsO89jQYFqwHC5e1hohBVqlJwmer2V1P-0-cd99ce8c7417095c09431c6e80510722)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032019.jpg?sign=1738809170-oJ4rqtutvcCDqMgKyzdAX2TK3n8q5wWO-0-fcbd546a7cdc30d5d0af87477fe346b4)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00032020.jpg?sign=1738809170-6mU0vRWXXRcWNdOMCPOcHbZHRZE8QIzc-0-578f5e74baedda7d54a5729ae76d1c59)
所以 与
不垂直.
如果那么
所以
就是说,利用向量坐标,我们可以计算出它的模.
练一练
算出下列各向量的模:
(1)若 ,则
(2)若 则
(3)若 则
如果点A坐标为(x1,y1),点B坐标为(x2,y2)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033001.jpg?sign=1738809170-N92Gek1LNv7fr0VpK4arIV4ZdOFW75sa-0-953fedbda374c34dacd19f49daecd5f4)
于是向量的模
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033003.jpg?sign=1738809170-2fUrKi8tVHUDhOEvcV6C7WBWnQ7rGM8E-0-173a47ce4302c4dd486647ea5742cce4)
由于的模就是点A和点B的距离,所以我们得到平面上两点间的距离公式
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033005.jpg?sign=1738809170-4meJ2zur5Z0b4c51drZe6ikhY5Hwg0CC-0-0cab9f5683393cb34394a0ca6ee76f52)
例3 已知A(8,-1),B(2,7),求.
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033007.jpg?sign=1738809170-eFK9RxK3vf0P5qjUza9WWlVgUWwDECOf-0-29d0e81cf25ec04b7cfbebbb38a0990a)
例4 已知点A(-3,-7),B(-1,-1),C(2,-2),求证:△ABC是直角三角形.
分析 可以通过判断某两边互相垂直,证得△ABC是直角三角形;也可以利用勾股定理的逆定理证得结论.
证法1:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033008.jpg?sign=1738809170-mV50Nd4xSjBCcaRfSASI8CsfpREgl3nL-0-bf3115c40c4d45cbce2d7f3532dd0c7e)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033009.jpg?sign=1738809170-549KoBexAcFEVl1I0dHM8yrMiX7iGRLJ-0-e02fba87c8d8961e22b27f95cdd29133)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033010.jpg?sign=1738809170-PamQQvcMciShV5ba0EfcOovIabFoV7xO-0-d71ae5364959b4a323fe8fba9f1d1993)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033011.jpg?sign=1738809170-H5KmeWOTMIG9b9hVsKalDg2LWLPjjIU5-0-7b3e5a5a298c2b65c64ddc926b1aaae7)
即∠ABC=90°.所以△ABC是直角三角形.
证法2:根据已知,得
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033012.jpg?sign=1738809170-ni1yGyDXkMhCrR1hsvQkdEzlufcY41Ye-0-94520ed25e5324653ccb0388f15832e1)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033013.jpg?sign=1738809170-W2aLwwbNZnzBdFdgEK7qcKlUmLCwAu4i-0-9f2c7fa01d379bcb6e19fbf85c7a8f03)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033014.jpg?sign=1738809170-0nVVgnJDrls9NYIX4EWt57QnjTBL8Mym-0-f6eb475671044e1b1c42bf43a2f9f567)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033015.jpg?sign=1738809170-X1q7rGyNCpFDoE6adz1tsuYQlaURJpHM-0-db8161366757ecffcebf085de14631bb)
即 CA2=AB2+BC2.所以△ABC是直角三角形.
练习
1.求的值,当:
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033018.jpg?sign=1738809170-juLJUWDUw1XFe7fIuh4kLNuycD1t0AjA-0-74219d66d9e99fbfd1aa05406dc3b79f)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033019.jpg?sign=1738809170-e3UettRw88Q5zzmrbDwcznt4MOicEdgd-0-4c44d1821edb90db161159e0fe49137f)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033020.jpg?sign=1738809170-lrEfs04GKrbTR18uZpHVmPylJ4TU663l-0-66725ae121c33008151e40f3e1d2e05e)
![](https://epubservercos.yuewen.com/689106/17180252105304906/epubprivate/OEBPS/Images/img00033021.jpg?sign=1738809170-XhaOGO62FKeXRSTmtnBNdFSODqsjire5-0-00718b96348213b0e5abc57b5cc2c9a0)
2.已知M(6,4),N(1,-8),求
3.已知A(-4,7),B(5,-5),求