![复旦大学数学系《数学分析》(第3版)(下册)笔记和课后习题(含考研真题)详解](https://wfqqreader-1252317822.image.myqcloud.com/cover/683/27032683/b_27032683.jpg)
12.2 课后习题详解
§1 富里埃级数
1.证明:
(1)1,cosx,cos2x,…,cosnx,…
(2)sinx,sin2x,sin3x,…,sinnx,…
是[0,π]上的正交系;但1,cosx,sinx,cos2x,sin2x,…,cosnx,sinnx,…不是[0,π]上的正交系.
证明:(1)因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2265.jpg?sign=1738988772-TLOsctDxTvIgtRFfFAUmfztSFGKCpAI0-0-3890a487838fca476c7db048045ab1f9)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2266.jpg?sign=1738988772-bAnkhbrMHAuXuYHsBr4JYehY5xbvX16m-0-9fb57dc6ff412f6b036cedd809e2fcc5)
则1,cosx,cos2x,…,cosnx,…是[0,π]上的正交系
(2)因
则sinx,sin2x,sin3x,…,sinnx,…是[0,π]上的正交系
又则1,cosx,cos2x,sin2x,…cosnx,sinnx,…不是[0,π]上的正交系.
2.证明:sinx,sin3x,…sin(2n+1)x,…是上的正交系,写出它的标准正交系
(即不仅正交,而且每个函数的平方在上的积分为1),并导出
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2271.jpg?sign=1738988772-PbEu1hL8YmcpBSTNKYfLCIhGzYUC8bpM-0-6507c8d241aa6a67485b84bde4eca7e6)
是[0,1]上的正交系.
证明:因
则sinx,sin3x,…sin(2n+1)x,…是上的正交系
又由得
则在上它的标准正交系为
又
则是[0,l]上的正交系.
3.设f(t)是周期为2π的方波,它在[﹣π,π]上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2280.jpg?sign=1738988772-mtFtQ5ddAmgCZf9SZWRX6VXfSrnFoVZe-0-2d5850871eb085d9508f95fd4d21916f)
将这个方波展开成傅里叶级数.
解:因又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2282.jpg?sign=1738988772-d2rk1T2dTZui4nxDx2LlWuZ5JkRK4sBn-0-64a30c45576016e916807dd331715e95)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2283.jpg?sign=1738988772-aZXHOhkkG1crEG13jBqjZqbC1pJCTmqP-0-f28219f7122b78769271e6dfce3de58a)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2284.jpg?sign=1738988772-ukyuwfKsX4FHUeObg9WNTcgcdipDln8X-0-265d96195b6453d64fb2e54a046dd1b5)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2285.jpg?sign=1738988772-UKOl4dBIQOi8Q4zHtNvGaX6PQJaMNlen-0-54ed61cff91a8595d0aae9e98a2ff83e)
4.设f(t)是周期为T的半波整流波,它在上的函数表示式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2287.jpg?sign=1738988772-wqnhMkfSHQV3tnM17oZMtTyeCXai2p4o-0-604feb44fb21edb74666f3a9361555de)
将这半波整流波展开成傅里叶级数.
解:因
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2290.jpg?sign=1738988772-d6qr8A4EuJ9mVqlSAln0eWRJXxaI86Od-0-e6f1ed191b603af376b3b2b6293d586b)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2291.jpg?sign=1738988772-PBefMyaRtMwLngwLZTz6EzpbLv9gSkPg-0-47bcfebb6b0a59fe11fe8bc4d93cd46f)
5.设f(t)以2π为周期,在[-π,π]内
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2292.jpg?sign=1738988772-y5af5zk0uBij0xAMw2n19uq1vTx9GXiD-0-55da56c881a605caed04659c9e538d2f)
把f(t)展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2294.jpg?sign=1738988772-TjD2p8xJqpPP07z7miuA0NOaWRzbwWiy-0-6a6fa8512685f80600174b67434a0c16)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2295.jpg?sign=1738988772-Qz82Xi2XQ5kvSURcRtvmbe73TOUsCgoz-0-d7ede6ec96f00cd7ff35493d13ff7c72)
6.设f(t)是周期为2π、高为h的锯齿形波,它在[0,2π]上的函数表示式为,将这个锯齿形波展开成傅里叶级数.
解:因
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2298.jpg?sign=1738988772-MGowctJqXqxZydg7zLzvx2oXCGVu90D5-0-53c2901e64b201f49a82dbe898f7cb8c)
则
7.将宽度为τ、高为h、周期为T的矩形波展开成余弦级数.
解:在一个周期内矩形波函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2301.jpg?sign=1738988772-VxgCWy1ENDLWq9xPwcDusd26MsDAfIMk-0-9a99e76b220f80c67beb1eeac4ab7b04)
则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2303.jpg?sign=1738988772-VJLssWfODq8VaEEvtG914vHFYDMl7wKG-0-265298911d900a9ac079d217f6131f6a)
8.写出如图12-1所示的周期为T的三角波在内的函数表达式,并将它展开成正弦级数.
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2305.jpg?sign=1738988772-PZCBYSX5nlFzDi3QiEN1zWlMMQf8WTUh-0-d2596640ae9034fbb4bf874f2ca31809)
图12-1
解:如图所示的周期为T的三角波在的函数表达式为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2307.jpg?sign=1738988772-tLURI39SO9MeCxKv1jAymHEAtbL7Dxaf-0-78fa0d4a583f797c44d7d4064893fc38)
先把f(t)延拓成上的函数,再据题意,还必须把它延拓成奇函数,于是a0=ak=0
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2309.jpg?sign=1738988772-L4RSbPmU8JlcmTt7DMOccLP9hkW0SKQI-0-60041cb37ef3681a2892fac9232154c1)
则
9.将f(x)=sgn(cosx)展开成傅里叶级数.
解:因f(x+2π)=sgn[cos(x+2π)]=sgn(cosx)=f(x),则f(x)是以2π为周期的周期函数
又
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2312.jpg?sign=1738988772-UnFKXVeKYDfO4IIVQNOljdp5W8jd2TAr-0-f27cad976ca2e6a12334393094b4622c)
则f(x)在(-∞,+∞)上可展为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2313.jpg?sign=1738988772-izBnb6vCLH38SjXR2hOYelqdQMYppx3e-0-e2665492e310aff3a3b1d81d50db72c4)
10.应当如何把区间内的可积函数f(x)延拓后,使它展开成的傅里叶级数的性状如下:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2315.jpg?sign=1738988772-5fKA4PJxe1TBFRrlS7LzlejJgQr6AYI6-0-228051924fc8cff364bdb5f152d471f9)
解:因展开式中无正弦项,则f(x)延拓后应为偶函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数a2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2317.jpg?sign=1738988772-C2JifhsSx9gsUX5JkysbnUnOLtlOUxgP-0-20d58be43743fa783cc2f9817bcef02f)
则
在左端前一积分中作变量代换,令x=π-t则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2319.jpg?sign=1738988772-ubU6Vr087rH3e8w24NTHbBHMdsYLXexf-0-8e412ad1fc5665114a78fb59f9b9a98a)
要使上式成立,则必须当时.有f(π-x)+φ(x)=0即φ(x)=-f(π-x)
于是就求出了延拓后的函数在内的表达式为-f(π-x)
又延拓后的函数为偶函数,则它在的表达式为f(-x),在
的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2324.jpg?sign=1738988772-4k5Q6T2SZyH61pqm0ZXe3zOwXxQqw1R1-0-a096429933c164962a3c68554cbe663a)
11.同上一题,但展开的傅里叶级数形状为:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2325.jpg?sign=1738988772-xag7qUZS2jY7W0YbkzCwvZWsGQ9xWXnJ-0-6e4f647ea7a76174adfdc586f19dac6b)
解:因展开式中无余弦项,则f(x)延拓后应为奇函数
设f(x)延拓到内的部分为φ(x)
因展开式中偶数项的系数b2n=0即
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2327.jpg?sign=1738988772-0DSN1CPsEDl1aa6HGU3dcAHC40cSpFQw-0-f2dda610888fb76f15cd45106606ca1d)
则
在左端前一积分中作变量代换,令x=π-t
则
要使上式成立,则必须当时.有-f(π-x)+φ(x)=0即φ(x)=f(π-x)
于是就求出了延拓后的函数在内的表达式为f(π-x)
又延拓后的函数为奇函数,则它在的表达式为-f(-x),在
上的表达式为-f(π+x)
不妨设延拓后的函数为ψ(x),则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2334.jpg?sign=1738988772-6JuQ3QcpjMw90YHhpbSSrptWFWiXbveX-0-ec3f271099c062c20d450f65ed47d040)
12.设f(x)可积、绝对可积,证明:
(1)如果函数f(x)在[-π,π]上满足f(x+π)=f(x),那么a2m-1=b2m-1=0
(2)如果函数f(x)在[-π,π]上满足f(x+π)= -f(x),那么a2m=b2m=0
证明:(1)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)=f(x)
则f(x)在[-π,π]上可积、绝对可积且以π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2336.jpg?sign=1738988772-j2qwTTTsV4VlffF5Do53PgYtFs7JYOqF-0-e4e929277554362ea9baa364bf127b79)
于是
从而,得a2m-1=0(m=1,2,…)
同理,得b2m-1=0(m=1,2,…)
(2)因f(x)可积、绝对可积且函数f(x)在[-π,π]上满足f(x+π)= -f(x),则f(x+2π)=f(x)
于是f(x)在[-π,π]上可积、绝对可积且以2π为周期
于是
对右端第二式作变量代换:t=x-π,则其变为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2339.jpg?sign=1738988772-yLBDzE1awANZ46eHAHq6hcoXYZNnl7FA-0-906e383c6b29a53f32862249be0e7669)
于是
从而,得a2m=0(m=1,2,…)
同理,得b2m=0(m=1,2,…)
13.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2343.jpg?sign=1738988772-fv3z2W7tZ24DSXOJMDWSiNEtnWUDkjVL-0-d28305221d82cfa60a2b198ffbf4beaf)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2346.jpg?sign=1738988772-qOEf8BveBfuZtpWi7ZMxCpJEAdAXcwbb-0-ac98aaf62bde30545ada3b64fcdb387b)
同理,得bn=-βn(n=1,2,…)
14.如果,问φ(x)与
的傅里叶系数之间有什么关系?
解:函数φ(x)与的傅里叶系数分为
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2350.jpg?sign=1738988772-90UnGc0aNkOxEppa0V6q5VTsoiLBT2Zs-0-354fd4369084b304fd2d5fc705c21ae3)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2351.jpg?sign=1738988772-Cp6CfsabTs87ZMipUzXYckzf1YKXs3Yf-0-bb2d05c85da4514377a4ddabfed45984)
对右端作变量代换y=-x,并将
代入,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2354.jpg?sign=1738988772-RddrINBUaR3yTOFGwUBti0J8YXlCAVOP-0-29de239e5bd0512e20efeacbf4071912)
同理,得bn=βn(n=1,2,…)
15.设f(t)在(-π,π)上分段连续,当t=0连续且有单侧导数,证明当p→∞时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2355.jpg?sign=1738988772-vqazEFnu12CddEnziKOFbIGTLIDQ6Tar-0-54be5984cd08f7c940618adf17c0af2b)
证明:
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2356.jpg?sign=1738988772-gkBEwA3bgD9pul72aOKOGs87q3A5smjU-0-a68ae1598336c32ec536abbae9b37a48)
在右端前一积分中令t=-x,则
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2357.jpg?sign=1738988772-p7fjxoCRBGZDL3OkR3fgyQtjLEHJ31Iw-0-c47450ba23c520b442d44e6a0539acbb)
代回原式,得
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2358.jpg?sign=1738988772-dH9CdnetEl9oyD5c1okXf0XNNu0W3Si2-0-3d7f505479953c18a5a4f7a4f3521fdd)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2359.jpg?sign=1738988772-NQVXvcnFS9E9DwpVFkFubAzDQAVmKCvA-0-c4712f4decf3d1c9d4b037ad602233dd)
下证
因
对于
因f(t)在(-π,π)上分段连续,在(δ,π)上连续,则
在(δ,π)上分段连续因而可积,则由黎曼引理,得
对于
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2367.jpg?sign=1738988772-DD5FYw8KiUqi0lwRjydNaeUzYUSxETMK-0-4996799dca3405539097a7d2fdb1c7a5)
因补充定义,t=0时,函数
的值为0,则
是[0,δ]上的连续函数
又f(t)为(-π,π)上的分段连续函数,则在[0,δ]上分段连续,因而可积,则由黎曼引理,得
因f'(+0),f''(-0)存在,则存在
补充定义,t=0时,函数值为f'(+0)+f'(-0),则
是[0,δ]上的分段函数,因而可积,于是由黎曼引理,得
综上可得,当p→∞时,
§2 傅里叶变换
1.设f(x)在(-∞,+∞)内绝对可积,证明在(-∞,+∞)内连续.
证明:对总有A',A'',使得ω∈[A',A'']
由于
后者收敛且不含参量ω,这表明积分在[A',A'']上一致收敛,据一致收敛积分的连续性,得
在[A',A'']上连续,从而在点ω处连续,由ω的任意性,得
在(-∞,+∞)内连续.
2.设f(x)在(-∞,+∞)内绝对可积,证明
证明:由f(x)在(-∞,+∞)内绝对可积,得对于任给的ε>0,存在A>0,使有
设f(x)在[0,A]内无暇点,则在[0,A]中插入分点0=t0<t1<…<tm=A,并设f(x)在[tk-1,tk]上的下确界为mk,于是
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2387.jpg?sign=1738988772-aELxo07xpOulgHKEdsGFubqNJOgEE3ph-0-6c844eafbf26f62bb6118d119cc76aaa)
从而
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2388.jpg?sign=1738988772-hrqTIhiRcLFcHtHH4baY1WnMPVifyEsa-0-bcef64d7900b5c02ac8c7234a93d5017)
其中ωk为f(x)在区间[tk-1,tk]上的振幅,△tk=tk-tk-1
由于f(x)在[0,A]上可积,故可取某一方法,使有
对于这样固定的方法,为一定值,因而存在δ>0,使当ω>δ时,恒有
于是对上述所选取的δ,当ω>δ时
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2392.jpg?sign=1738988772-20IrN8TMvtShJOvWBV9RK69UAIcukIas-0-e4d624ca04cdc3590840b267ce96fc6c)
其次,设f(x)在区间[0,A]中有瑕点,为简便起见,不妨设只有一个瑕点且为0,于是对任给的ε>0,存在η>0,使有
又f(x)在[η,A]上无瑕点,故应用上述结果可得存在δ,使当ω>δ时,恒有于是当ω>δ时,有
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2395.jpg?sign=1738988772-FshsFyNCZ1dm68IkfA78kkcpWgTl1o0D-0-423744893f3b91efd25ea59a99283f3c)
即
同法,得当f(x)在(-∞,+∞)内绝对可积时,均有
同法可证得当f(x)在(-∞,+∞)内绝对可积时,
于是
3.求下列函数的傅里叶变换:
(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2400.jpg?sign=1738988772-vn0IA2OfGeDyZA9cdC50JFye1CTBpXzH-0-bce766ad839a65a1fc07d6f4d8de86f5)
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2401.jpg?sign=1738988772-7DPI3RGWc6EUB94tKBHeXhPUJWZ8L540-0-32a4b17aa63b15bffb58327ca8dc6b23)
解:(1)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2402.jpg?sign=1738988772-gHR0KYrtAWaFQdcq9CamMrvrGOfISOVp-0-69186600ab1cc39f46c12e93163f60c5)
因为(-∞,+∞)内的连续函数,则
(2)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2405.jpg?sign=1738988772-YmUjAgQE2S8D8LYM6UGwoGirHBbQwQy3-0-408170282f48b228b07a62cbd922a88d)
![](https://epubservercos.yuewen.com/E71FD9/15436379604490706/epubprivate/OEBPS/Images/image2406.jpg?sign=1738988772-DKYGhZw1EHLFn3KNjryboKdWXXq6ue25-0-ce6c257859634a4d97d6fb0c48b67309)
因为(-∞,+∞)内的连续函数,则