![邱关源《电路》(第5版)配套题库【名校考研真题+课后习题+章节题库+模拟试题】(下册)](https://wfqqreader-1252317822.image.myqcloud.com/cover/791/27031791/b_27031791.jpg)
第15章 电路方程的矩阵形式
一、计算题
1.如图15-1所示的非平面线图,选定5,6,7,8,9号支路为树。试写出与所选树对应的各基本回路、各基本割集所含的支路。[华中科技大学2007研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image763.jpg?sign=1738979665-ZYIpw0HsfZ91OBl4d9psykDmqK6lIvz6-0-480b1343f5611ebfa3a00490f6c11653)
图15-1
解:5,6,7,8,9号支路为树,树支数是5,所以有向图的结点数为n=6,独立割集数n-1=5,支路数为b=9,基本回路数为b-n+1=4。对应题中所选的树,得基本回路矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image764.jpg?sign=1738979665-Q05YLHbJISVSaQujYRd3ScOdDOl20vqO-0-36169d21bb63127d7a6c6166272b7ae4)
所以基本回路为{1,7,8,9},{2,6,8,9},{3,5,6,8},{4,5,6,7,8,9}。对应的割集矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image765.jpg?sign=1738979665-dUQi49hp3d5XWZxBxKGj9UVykT08E5dt-0-156a50baf45b55c1841a69749b7c74df)
所以基本割集为{5,3,4},{6,2,3,4},{7,1,4},{8,1,2,3,4},{9,1,2,4}。
2.如图15-2所示电路,开关打开,并处于稳定状态,且已知uc(0-)=0,iL(0-)=0。t=0时开关闭合。列出以uc,iL为状态变量的状态方程,并整理为标准形式。[西安交通大学2006研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image766.jpg?sign=1738979665-gcAGbYRVhct4Y9PUYOMrngAFt4ofPkGC-0-eb350bf0c75d9cd13913236a3d36211f)
图15-2
解:分析开关闭合后电路状态:
对结点列KCL方程,对含电感、电容的回路列KVL方程:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image767.png?sign=1738979665-KD4vvlHfKZvxoY8N3QyzkRGpLWKHNjUg-0-80e12e3ccc0ddfbd70e2c44f17dff90c)
进一步有:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image768.jpg?sign=1738979665-VWNnms85ZJpoJ8XEyNBgxbKSi3b8Rq1e-0-fc207c9b6f68a63888900ee2ed7ab85d)
代入参数并整理成状态方程的标准形式,有:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image769.jpg?sign=1738979665-LUYFgrqaexHnGbaklQD3BXcGU8igWMOt-0-a45fb739cd90c5584d73616a7ab42325)
3.已知某网络的基本割集矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image770.jpg?sign=1738979665-oSxXOYXR8eNFnHAOehDCk9kL2b5jxpA0-0-baacde1083d358dff49f29e067afead5)
其对应的支路阻抗矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image771.jpg?sign=1738979665-Wl5wZ40xfGpOdSX47BbTy6nEVG8nCFGM-0-07675bc5ceab83a2bd70d433cd936b74)
试求:(1)基本回路矩阵B;(2)割集导纳矩阵Y;(3)回路阻抗矩阵Z1。[天津大学2004研]
解:(1)在矩阵Q的每一列中,只有一个不为零且为1的列为1、3、5,所以支路1、3、5为树支,支路2、4、6为连支。将给定的矩阵Q按先树支后连支的顺序重新排列如下:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image772.jpg?sign=1738979665-LUr2L8SZhsa0FRoSpoS6d3IeSN2G9EJ6-0-ad292a5e62a1b9cfc3ccb4cca8dd5643)
若均按先树支、后连支的同一支路顺序排列,我们可以把矩阵写成下列形式:
,且存在BQT=0得到Bt=-Q1T,所以得其对应的基本回路矩阵为:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image774.jpg?sign=1738979665-t92wSfU4i7L3QW4cUZUK0rwGMxHRO9sN-0-3a5d305012843b3289aaf1dbd21b4d91)
还原为按支路编号顺序的基本回路矩阵:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image775.jpg?sign=1738979665-IOPAVRmLacEJ6ZcAdRvk2o0M7uihbFRo-0-04231ae33b2f884eff1631cd215ba8e3)
(2)支路导纳矩阵为:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image776.jpg?sign=1738979665-BVwpWdoXnzRGqTNS5bkjr81tHZoQwcYU-0-b73540745dfdc4277432b8c9dc337540)
割集导纳矩阵Y=QYbQT,代入已知量得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image777.jpg?sign=1738979665-OUUPzyb9lda3OXXjdffOjwPTWVEvDBWQ-0-a24e52a2a33a345479cd8755ee76fc40)
(3)回路阻抗矩阵为Z1=BZBT,代入已知量得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image778.jpg?sign=1738979665-20eGqVNAFH1Y11ARgMF5pfKYNqS1z3eU-0-e3e94dc65e8e6b68770285990434beda)
4.设电源频率为ω,电路如图(a)所示,其有向图如图(b)。
(1)写出关联矩阵A;
(2)以支路3、4、5为树支,写出基本回路矩阵Bf;
(3)写出支路阻抗矩阵Z(以支路1-6为排列顺序);
(4)写出支路导纳矩阵Y(以支路1-6为排列顺序)。[北京交通大学2011研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image779.jpg?sign=1738979665-bHIenzmdgKcCj85z9njyJ9IKIK1359tq-0-9cdb50d9456584710f61380b3d29a8ff)
图15-3
解:(1)关联矩阵A
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image780.png?sign=1738979665-GCUa8BixppeXRxooM7yq2JDkHZ9tMydI-0-c7c3da66e5282f235b7df784a803be95)
(2)基本回路
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image781.png?sign=1738979665-9p0hsOdDYLrGIGWSfHXs5XJ8b2L4ipWQ-0-012f1d27eb94e4ce97f02efa04ee35b2)
(3)支路阻抗矩阵
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image782.png?sign=1738979665-F9Kn0vYiRbik1fTBa4Nn1oUIcuqnOH47-0-9368c545ca991a00130127ac748565bd)
(4)导纳矩阵
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image783.png?sign=1738979665-KCSXc71VLCRkguxOOOxvx9njhxuxgKS3-0-c7d343523d82474c04143e0198b7d535)
5.如图15-4所示正弦电路中,已知,
,
,
,
A,
V。(1)选定参考点如图所示,将电路作必要的等效后写出关联矩阵A;(2)写出支路导纳矩阵和节点导纳矩阵;(3)用节点电压方程求节点①的电位。[北京交通大学2009研]
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image790.jpg?sign=1738979665-OI6t7JltogCnMdyQrIlbtRAoFn5L4a73-0-e5ea99ab32087f14d043deca131f2e16)
图15-4
解:(1)根据题意,令,
,画出等效电路如图所示,可得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image793.png?sign=1738979665-1y42xnZz7HiU1W94swiIDR669ecBoYN2-0-0674730d0cba59a8a2afcae9327e9741)
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image794.jpg?sign=1738979665-DmZrxag408yVJReoBYwl7D2nhvaaSrLm-0-ccd68b40696fee6e39532e9459e9ab66)
图15-5
(2)支路导纳矩阵:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image795.png?sign=1738979665-Nzq6sCUFuckUJL4iQFAcGdFcNH9H0UyJ-0-bbf9e4e7c5e09f8bc31470d3ad24bf67)
节点导纳矩阵:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image796.png?sign=1738979665-RuZeq6sQAh0HCUfMVzcXY13QXMzqQSpl-0-09e126612987b6a3a2438fb4971c8a89)
(3)因为,
所以: ,
又可知:
代入,得:
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image803.png?sign=1738979665-Ma6CkImKRK8Nva0aoBJkG9Ufdn6YpDoM-0-a0589db127a0482204a24feb55c8f835)
解非齐次线性方程组,得:
化为三角形,得:
6.已知某网络的基本回路矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image806.png?sign=1738979665-M5fw8A4l1yrTaeR0HZLCybYU20c70dDf-0-438fb3362510a075faeba24014795efa)
其对应的支路阻抗矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image807.png?sign=1738979665-kOrPPS95QZzpOJd9VCaivWJoshtc5hcJ-0-44c734e4f0681e557c18614af6c6f4e5)
试求:
(1)该网络的回路阻抗矩阵〔ZL〕;
(2)对应于〔Bf〕的基本割集矩阵〔Qf〕;
(3)割集导纳矩阵〔YC〕。[天津大学2005研]
解:(1)
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image808.png?sign=1738979665-Zeew2V5cT2Gi5BdksJvvrRsQVGTK1oWa-0-c61163a698ff066d4d61735d2a3e815b)
(2)可得
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image811.png?sign=1738979665-89KsFqMPwHPYa52joburCx57M6Gn5g7B-0-775dc19fcd7063ff71bd6b6ac935e009)
(3)由已知支路阻抗矩阵得支路导纳矩阵为
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image812.png?sign=1738979665-xnJ6dPUEDemXtZrgpXuRM4SdVT9Mig1r-0-9a70e0a3b7786984f3bc9ae9b7fcc929)
可得
![](https://epubservercos.yuewen.com/B7597F/15436365804435306/epubprivate/OEBPS/Images/image813.png?sign=1738979665-QueLGvVObpQqo3PecjG3T6xWeZaapQfu-0-50b33d93e8624df23f76238afdba2cc4)